

LA-UR-17-30580

Approved for public release; distribution is unlimited.

Title: Building a Predictive Capability for Decision-Making that Supports

MultiPEM

Author(s): Carmichael, Joshua Daniel

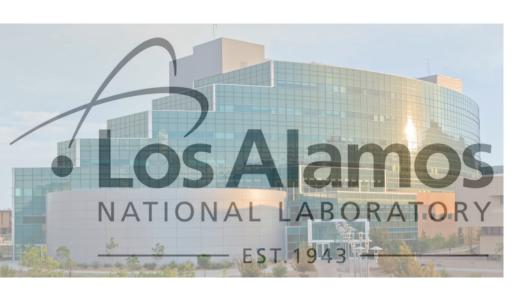
Nemzek, Robert James

Intended for: Report

Issued: 2017-12-05 (rev.1)

Building a Predictive Capability for Decision-Making that Supports MultiPEM

Application to Seismic, Acoustic and Radio Emissions that Signal Near Surface Explosions



Joshua D. Carmichael Robert J. Nemzek

13-Nov-2017

Multi-Phenomenological Explosion Monitoring (MultiPEM)

What is the Objective of MultiPEM?

Multi-Phenomenological Explosion Monitoring (MultiPEM)

What is the Objective of MultiPEM?

- Multi-phenomenological explosion monitoring (multiPEM) is a developing science that uses multiple geophysical signatures of explosions to better identify and characterize their sources.
- MultiPEM researchers seek to integrate explosion signatures together to provide stronger detection, parameter estimation, or screening capabilities between different sources or processes.
- This talk will address forming a predictive capability for screening waveform explosion signatures to support multiPEM

Multi-Phenomenological Explosion Monitoring (MultiPEM)

What is the Objective of MultiPEM?

 A predictive capability means that if a hypothetical explosion of an anticipated size/yield occurs, we can quantify how well we can detect, associate, screen, locate, or characterize the signatures or parameters of that source with uncertain data

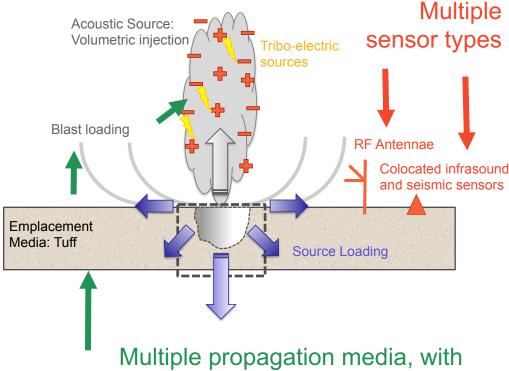
Focus: Waveform Signature Detection

Example Explosion Signatures

Aboveground explosion signatures include **radio**, **acoustic**, and **seismic** waveforms. These waveforms give data on source size and emplacement

What is our Predictive Capability?

A hypothetical explosion of a given size occurs. How well we can <u>detect</u> signatures of that source with uncertain data?



disparate noise stationarity

(seismic, sound, light)

Monitoring Detection Problems that Require a Predictive Capability

This Talk Answers Three Research Challenges

- 1. Does **mean** predicted detector performance match **mean** observed performance?
- 2. Does observed versus predicted detector performance exceed day-to-day observed variability? That is, does predicted performance assembled on day *A* match observations from day *A* better than observations assembled on day *B*?
- 3. What is the range in observed versus predicted magnitude discrepancies? That is, if a detector predictively identifies explosions of magnitude m with probability \Pr_D , what is the observed, absolute range Δm the detector identifies explosions for that \Pr_D ?

Decision Theory Statement for Any Signature

Binary Testing on Two Source Types

Building a Detector (1/2)

• A waveform detector is a decision rule that compares a statistic $s_k(x)$ with a threshold η to test if data x_k that records signature k is evidence for a target signal (hypothesis \mathcal{H}_1) or not (hypothesis \mathcal{H}_0):

$$\begin{array}{ccc} & \mathcal{H}_1 \\ s_k(\mathbf{x}) & \gtrless & \eta \\ & \mathcal{H}_0 \end{array}$$

- The statistic $s_k(x)$ has PDFs that depend on the presence $(f_S(s_k(x); \mathcal{H}_1))$ or absence $(f_S(s_k(x); \mathcal{H}_0))$ of that target signal
- The probability Pr_D of correctly deciding a target signal is present compared with the false-alarm probability Pr_{FA} quantifies the detector's performance

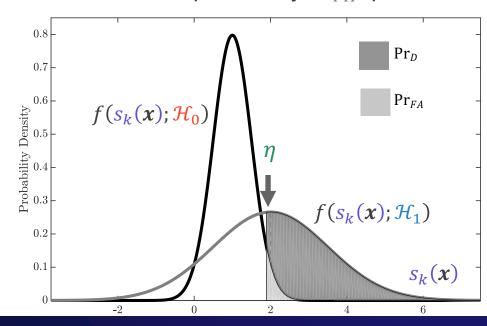


Building a Detector (2/2)

• A waveform detector is a decision rule that compares a statistic $s_k(x)$ with a threshold η to test if data x_k that records signature k is evidence for a target signal (hypothesis \mathcal{H}_1) or not (hypothesis \mathcal{H}_0):

$$s_k(\mathbf{x}) \overset{\mathcal{H}_1}{\underset{\mathcal{H}_0}{\gtrless}} \eta$$
 Examples: STA/LTA, correlation, subspace, SNR, spectrogram, cone

- The statistic $s_k(x)$ has PDFs that depend on the presence $(f_S(s_k(x); \mathcal{H}_1))$ or absence $(f_S(s_k(x); \mathcal{H}_0))$ of that target signal
- The probability Pr_D of correctly deciding a target signal is present compared with the false-alarm probability Pr_{FA} quantifies the detector's performance

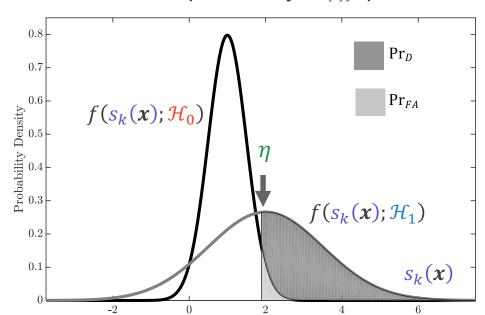


Building a Detector's Predictive Capability (1/2)

• A waveform detector is a decision rule that compares a statistic $s_k(x)$ with a threshold η to test if data x_k that records signature k is evidence for a target signal (hypothesis \mathcal{H}_1) or not (hypothesis \mathcal{H}_0):

$$\begin{array}{ccc} & \mathcal{H}_1 \\ s_k(\mathbf{x}) & \gtrless & \eta \\ & \mathcal{H}_0 \end{array}$$

- The statistic $s_k(x)$ has PDFs that depend on the presence $(f_S(s_k(x); \mathcal{H}_1))$ or absence $(f_S(s_k(x); \mathcal{H}_0))$ of that target signal
- The probability Pr_D of correctly deciding a target signal is present compared with the false-alarm probability Pr_{FA} quantifies the detector's performance



Problem Statement

Challenge: If a hypothetical event produces signature k and statistic $s_k(x)$, can we predict the probability Pr_D of detecting that event?

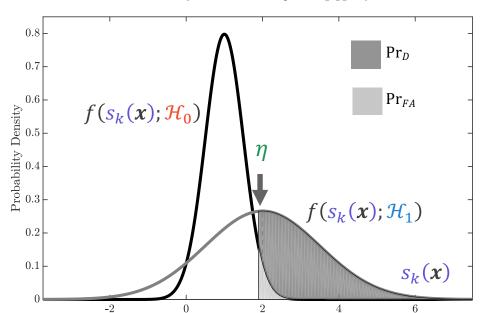
Equivalently, what is the <u>predictive</u> capability of that detector?

Building a Detector's Predictive Capability (2/2)

• A waveform detector is a decision rule that compares a statistic $s_k(x)$ with a threshold η to test if data x_k that records signature k is evidence for a target signal (hypothesis \mathcal{H}_1) or not (hypothesis \mathcal{H}_0):

$$\begin{array}{ccc} & \mathcal{H}_1 \\ s_k(\mathbf{x}) & \gtrless & \eta \\ & \mathcal{H}_0 \end{array}$$

- The statistic $s_k(x)$ has PDFs that depend on the presence $(f_S(s_k(x); \mathcal{H}_1))$ or absence $(f_S(s_k(x); \mathcal{H}_0))$ of that target signal
- The probability Pr_D of correctly deciding a target signal is present compared with the false-alarm probability Pr_{FA} quantifies the detector's performance



Problem Statement

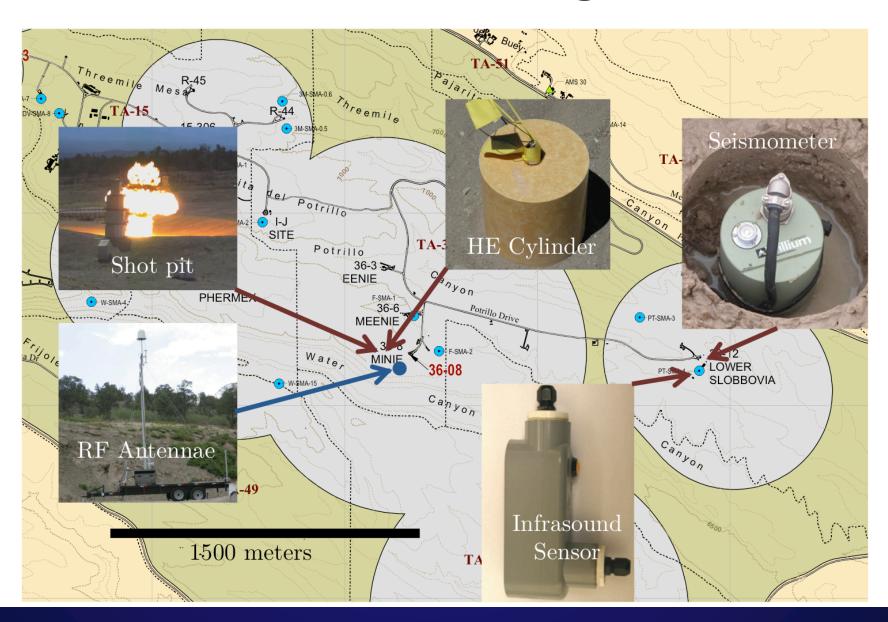
Method: PDF $f_S(s_k(x); \mathcal{H}_1)$ is effectively parameterized by the magnitude m of the hypothetical event that produces statistic $s_k(x)$.

We will compare observed detector counts with predicted counts

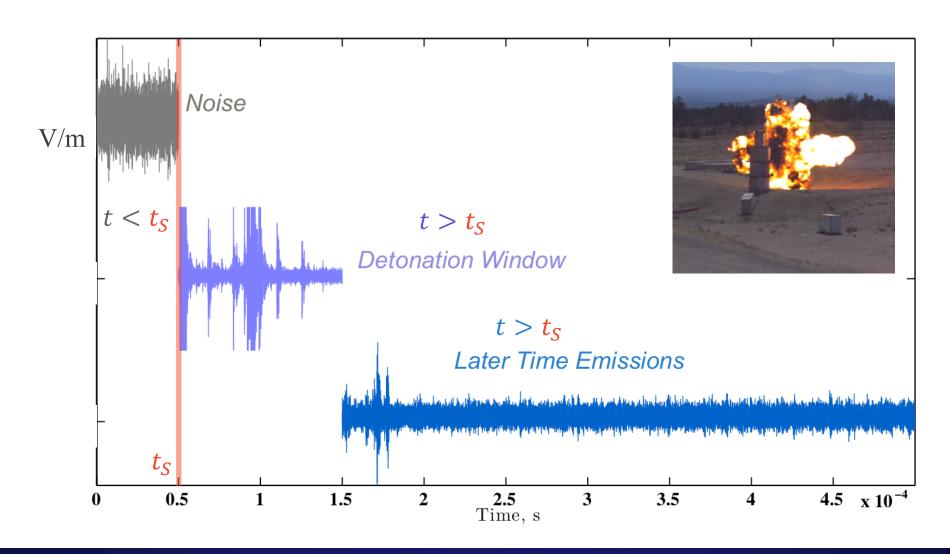
Predicting the Capability of a Radio Emission, SNR Detector

Binary Testing on Two Source Types

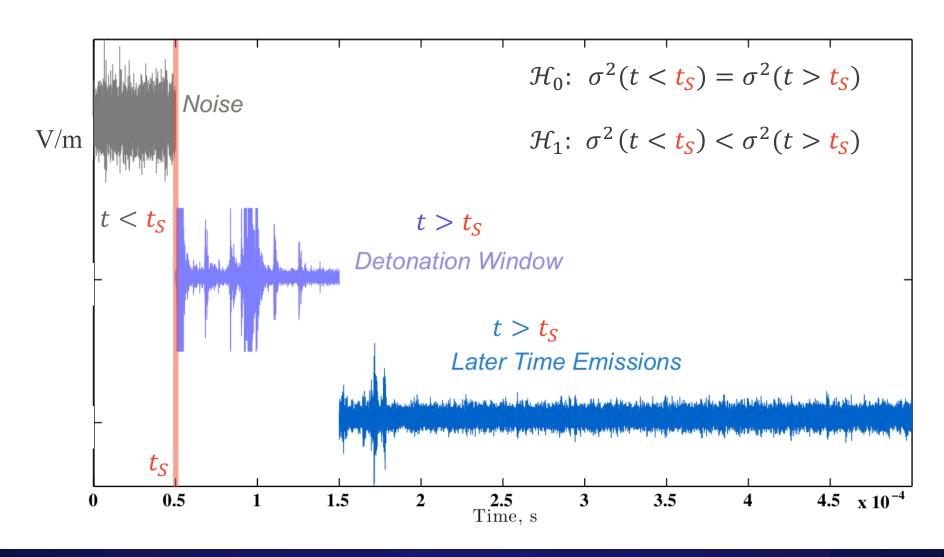
Minie Data Collection: 70 Charge Shots



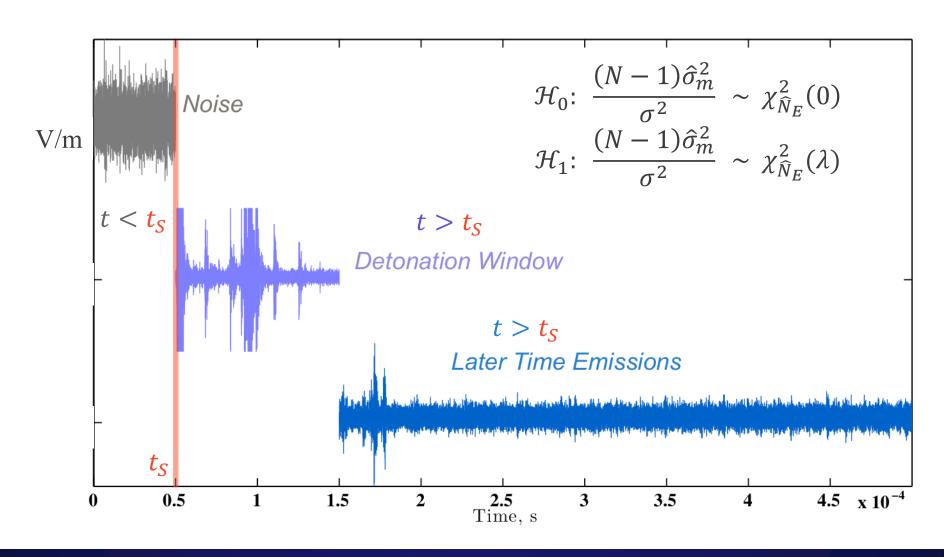
Radio Emissions from Explosions (1/6)



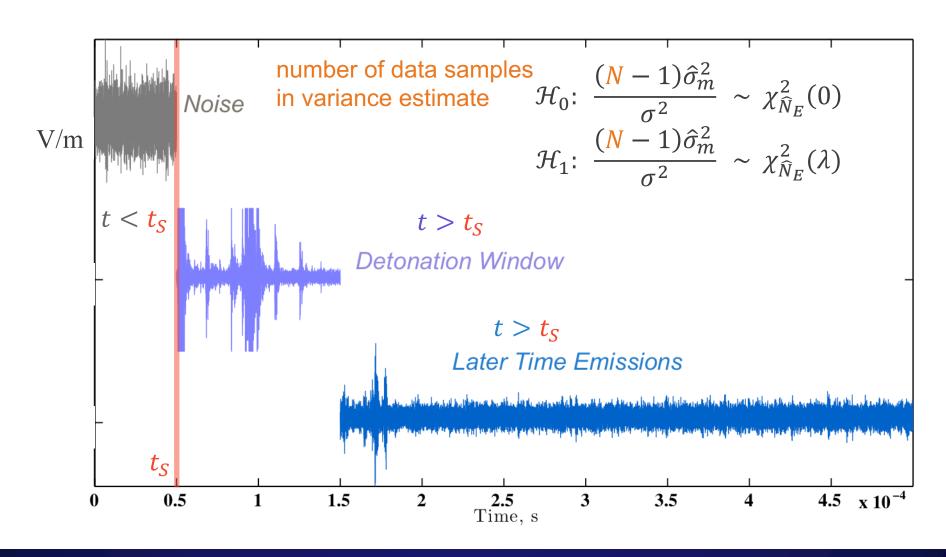
Radio Emissions from Explosions (2/6)



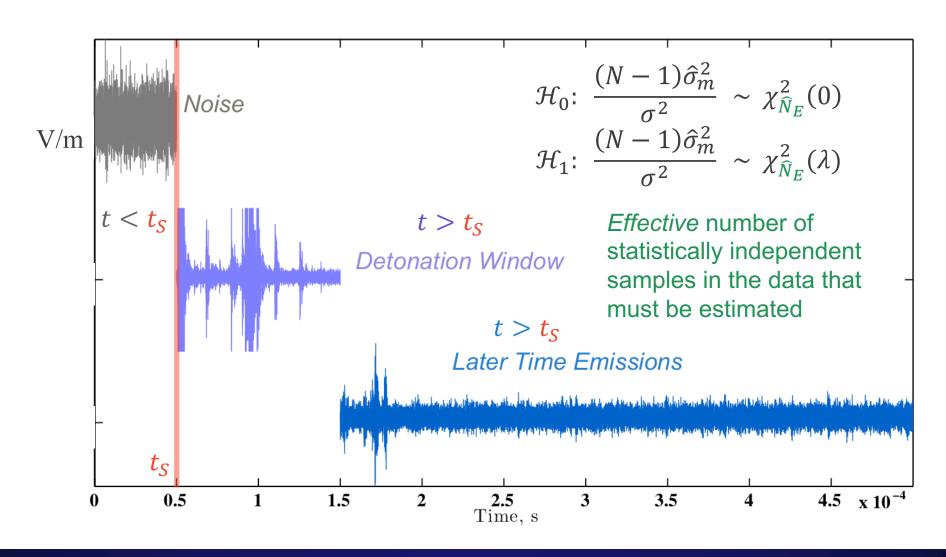
Radio Emissions from Explosions (3/6)



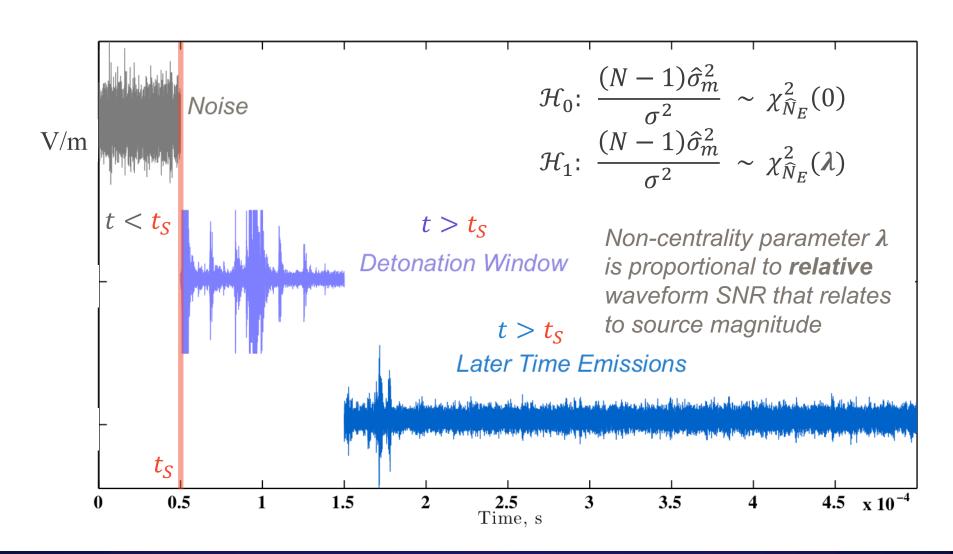
Radio Emissions from Explosions (4/6)



Radio Emissions from Explosions (5/6)



Radio Emissions from Explosions (6/6)



Observed versus Predicted "ROC Curves"

Observed ROC Curves

• Scale **template waveform** of amplitude A_0 recording **template source** with magnitude m_0 to amplitude A consistent with a signal triggered by source of magnitude $m = m_0 + \Delta m$

$$A = 10^{\Delta m} A_0$$

- Repeatedly infuse scaled waveform into real, recorded noise sampled from multiple times and days
- Process noisy waveforms with radio emission, SNR detector over days and Δm. Dynamically adjust detector threshold η to maintain constant 10⁻⁸ false alarm rate

Predicted ROC Curves

- Estimate parameters that shape "explosion signal present" PDF during detector processing
- Construct temporally variable PDF curves and compute detection probabilities at each Δm value
- Integrate area right of concurrent detection threshold η to estimate detection probability \Pr_D .
- Scale probability by the true number of infused waveforms to estimate expected number of counts N · Pr_D.

Detector Parameters of $f_S(s_k(x); \mathcal{H}_1)$ (1/2)

Parameter that separates $f_S(s_k(x); \mathcal{H}_1)$ and $f_S(s_k(x); \mathcal{H}_0)$ curves

Noncentrality Parameters

Competing PDFs

Radio, SNR Detector

•
$$\lambda = 10^{2\Delta m} \frac{A_0^2 N}{\sigma^2}$$

$$\bullet \ \hat{\lambda} = \widehat{N}_E \cdot 10^{\frac{e}{10}}$$

Acoustic Power Detector

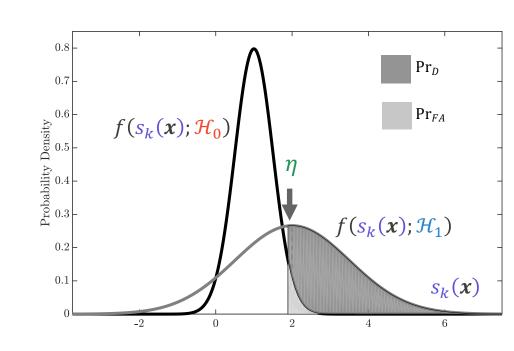
•
$$\lambda = \text{SNR}\left(\frac{N_2}{N_1}\right)(N_2 - 2) - N_1$$

•
$$\hat{\lambda} = Z \cdot \left(\frac{\widehat{N}_1}{\widehat{N}_2}\right) \left(\widehat{N}_2 - 2\right) - \widehat{N}_1$$

Seismic Correlation Detector

•
$$\lambda = (N-1)\left(\frac{\rho^2}{1-\rho^2}\right)$$

•
$$\hat{\lambda} = (N-1) \left(\frac{\hat{\rho}^2}{1-\hat{\rho}^2} \right)$$



Detector Parameters of $f_S(s_k(x); \mathcal{H}_1)$ (2/2)

Parameter that separates $f_S(s_k(x); \mathcal{H}_1)$ and $f_S(s_k(x); \mathcal{H}_0)$ curves

Noncentrality Parameters

Radio, SNR Detector

•
$$\lambda = 10^{2\Delta m} \frac{A_0^2 N}{\sigma^2}$$

•
$$\hat{\lambda} = \hat{N}_E \cdot 10^{\frac{e}{10}}$$

Acoustic Power Detector

•
$$\lambda = \text{SNR}\left(\frac{N_2}{N_1}\right)(N_2 - 2) - N_1$$

•
$$\hat{\lambda} = Z \cdot \left(\frac{\widehat{N}_1}{\widehat{N}_2}\right) \left(\widehat{N}_2 - 2\right) - \widehat{N}_1$$

Seismic Correlation Detector

•
$$\lambda = (N-1)\left(\frac{\rho^2}{1-\rho^2}\right)$$

•
$$\hat{\lambda} = (N-1) \left(\frac{\hat{\rho}^2}{1-\hat{\rho}^2} \right)$$

Parameter Dependencies

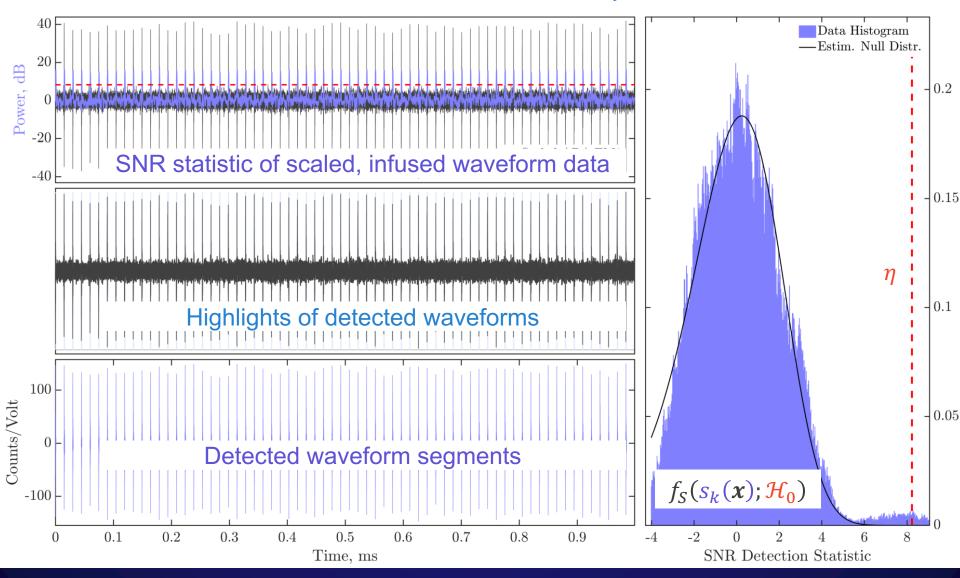
N samples in window, noise variance σ^2 , waveform amplitude A_0^2 , source magnitude Δm , e is the SNR (dB) statistic at detection, hats $\hat{}$ are estimates of their arguments

 N_1 samples in STA window, N_2 samples in LTA window, SNR is the waveform signal to noise ratio, Z is the STA/LTA statistic at a detection, hats $\hat{}$ are estimates of their arguments

N samples in the, ρ is the cross-correlation coefficient and hats $\widehat{\ }$ are estimates of their arguments

Operation of the Radio Emission, SNR Detector

Detect Scaled Waveforms Infused into Real, Recorded Radio Noise



Quantifying the Predictive Capability of a Radio Emission, SNR Detector

Estimate Magnitude Differences between Predicted and Observed ROC Curves

Process over 12 Days, $-2.3 \le \Delta m \le 0$

ROC Curve Comparison

Three Research Challenges

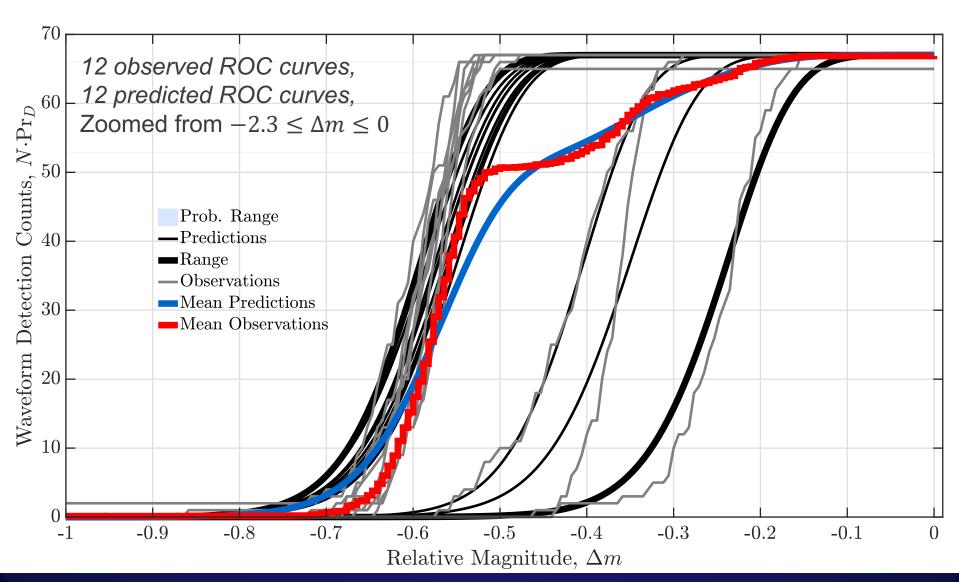
- Does mean predicted detector performance match mean observed performance?
- 2. Does observed versus predicted detector performance exceed day-to-day observed variability? That is, does predicted performance assembled on day *A* match observations from day *A* better than observations assembled on day *B*?
- 3. What is the range in observed versus predicted magnitude discrepancies? That is, if a detector predictively identifies explosions of magnitude m with probability Pr_D , what is the observed, absolute range Δm the detector identifies explosions for probability Pr_D ?

Solution Method

- Compute predicted and observed ROC curves over a magnitude grid, then average both of over time, and compare
- Compare predicted ROC curves for each day to observed ROC curves for all days; then compare observed ROC curves against observed ROC curves on other days
- 3. Introduce ROC "magnitude discrepancy": (i) select a probability interval; (ii) find probability Pr_D^{max} in that interval with the max magnitude range across mean observed versus predicted ROC curves; and (iii) estimate the mag range between ROC curve pairs at Pr_D^{max} .

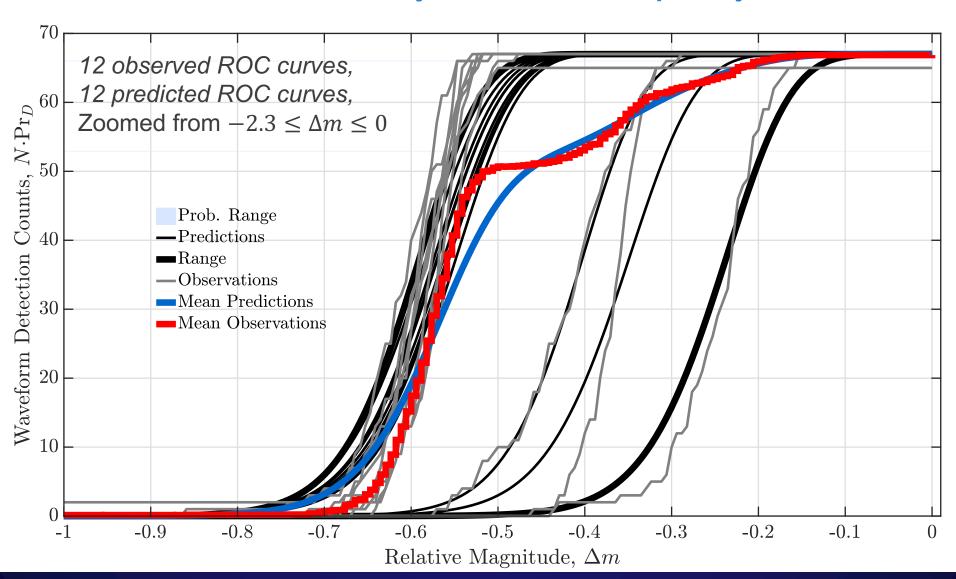
Radio Emissions from Explosions (1/2)

Predicted versus Observed ROC Curves for an SNR Detector



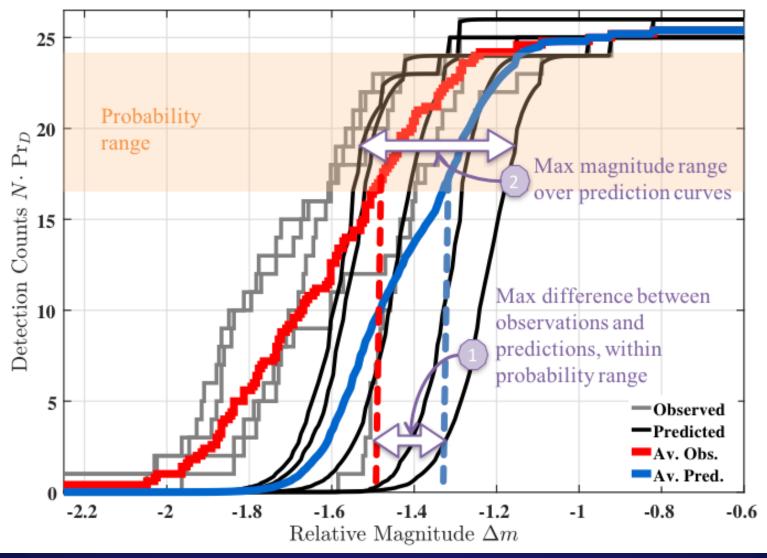
Radio Emissions from Explosions (2/2)

How do we Quantify our Predictive Capability?



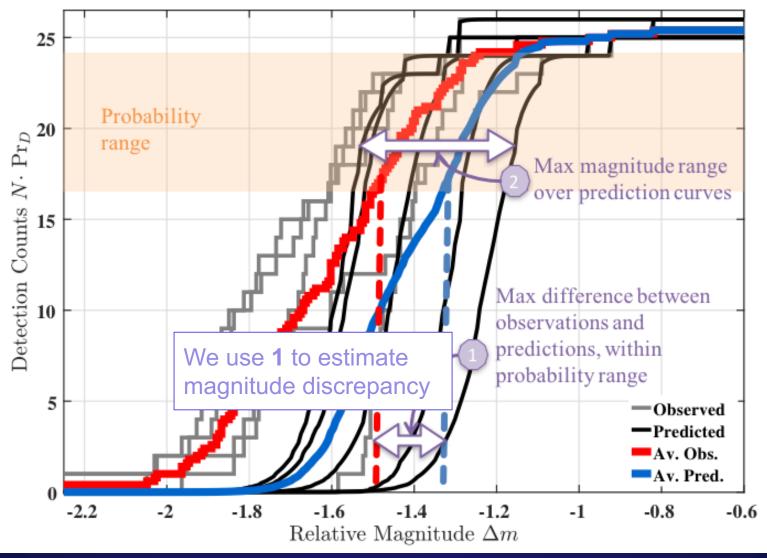
Defining Magnitude Discrepancy (1/2)

Magnitude difference between predicted and observed ROC curves, at constant probability (different ROC curves here, for illustration)

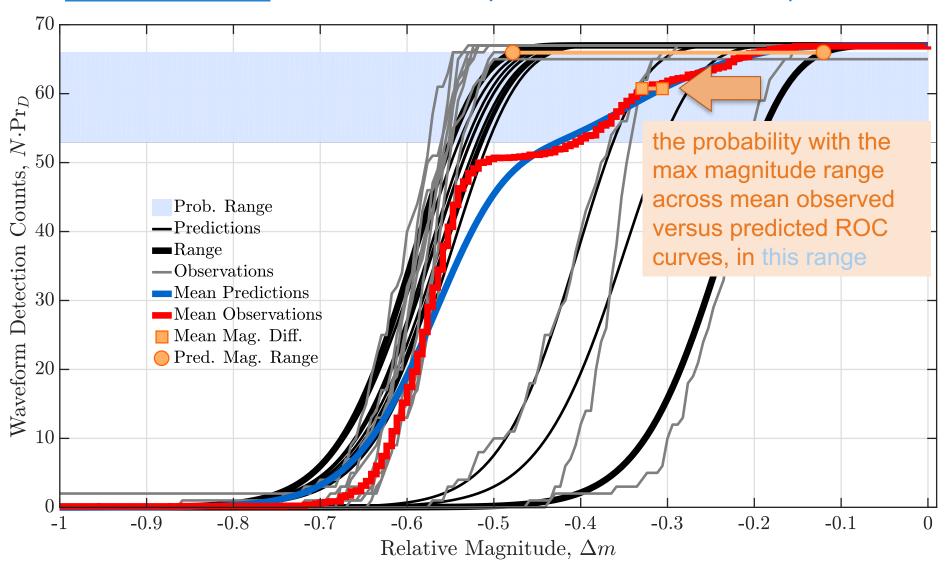


Defining Magnitude Discrepancy (2/2)

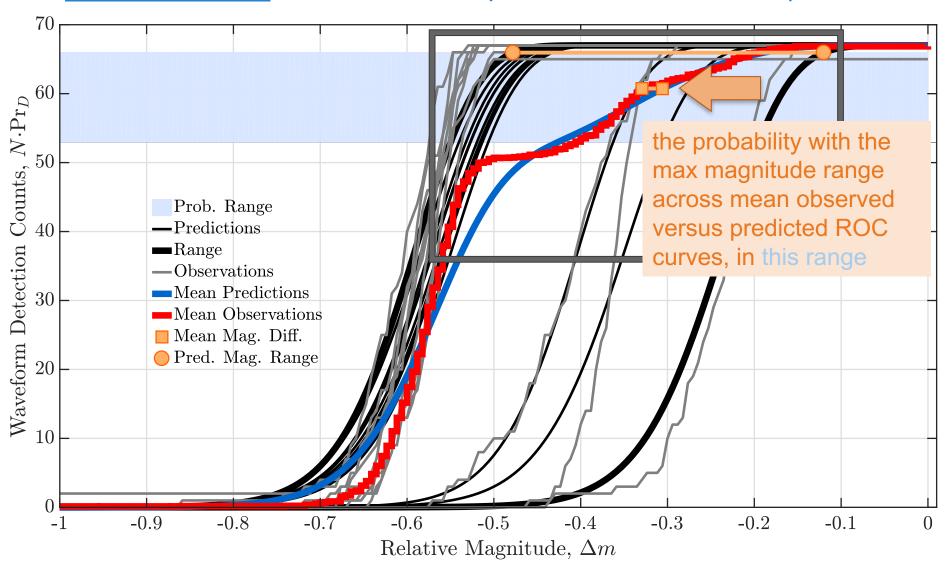
Magnitude difference between predicted and observed ROC curves, at constant probability (different ROC curves here, for illustration)



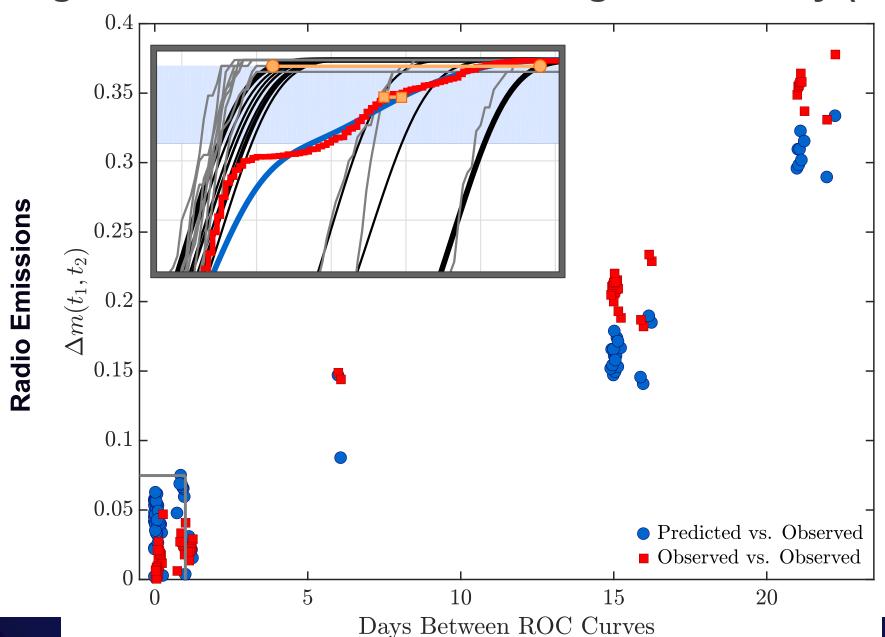
Radio Emissions from Explosions (1/2)



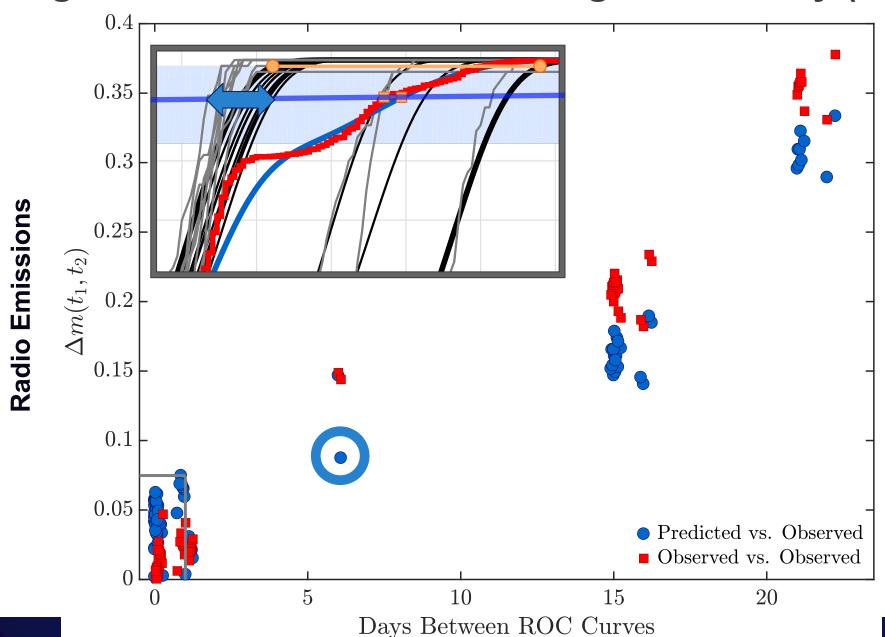
Radio Emissions from Explosions (2/2)



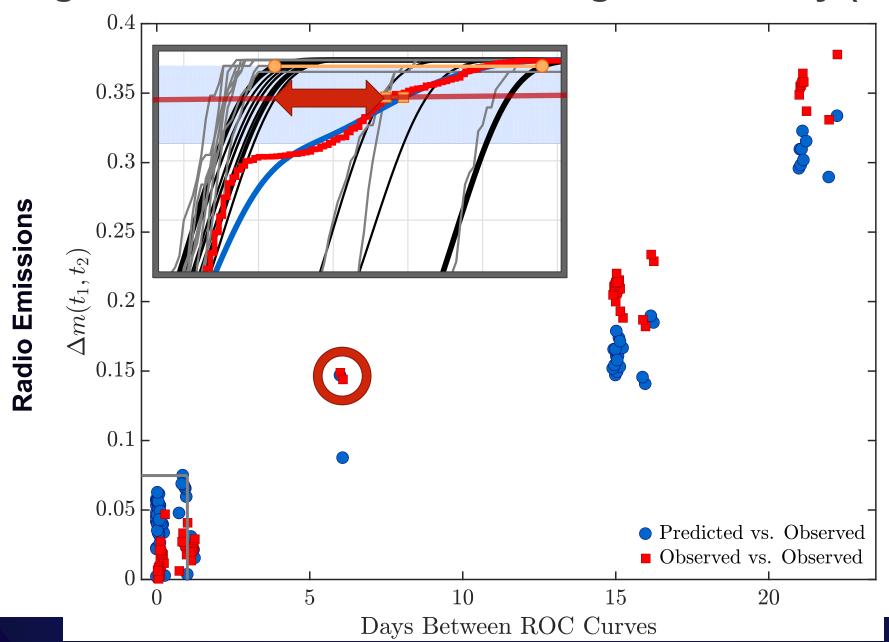
Magnitude Difference at Max Range Probability (1/5)



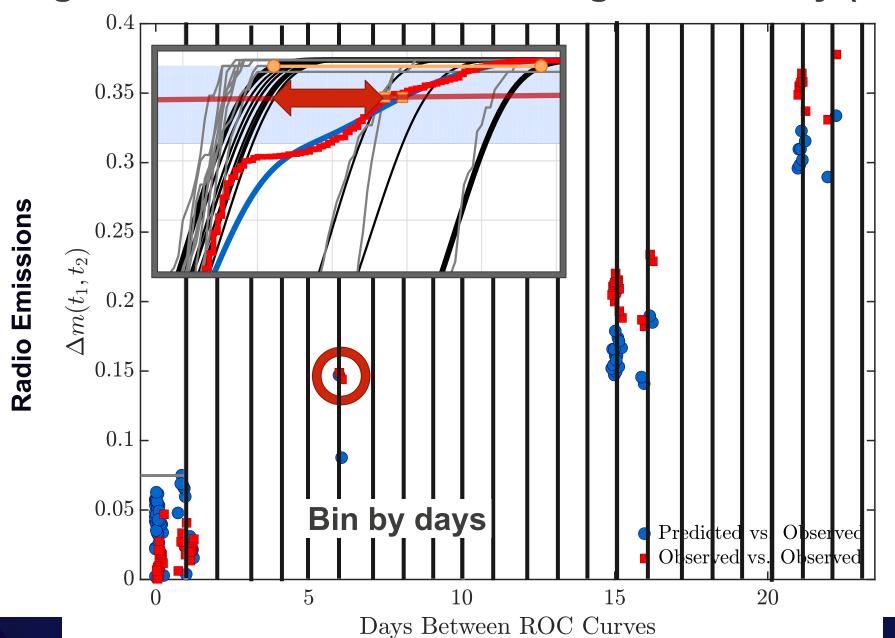
Magnitude Difference at Max Range Probability (2/5)



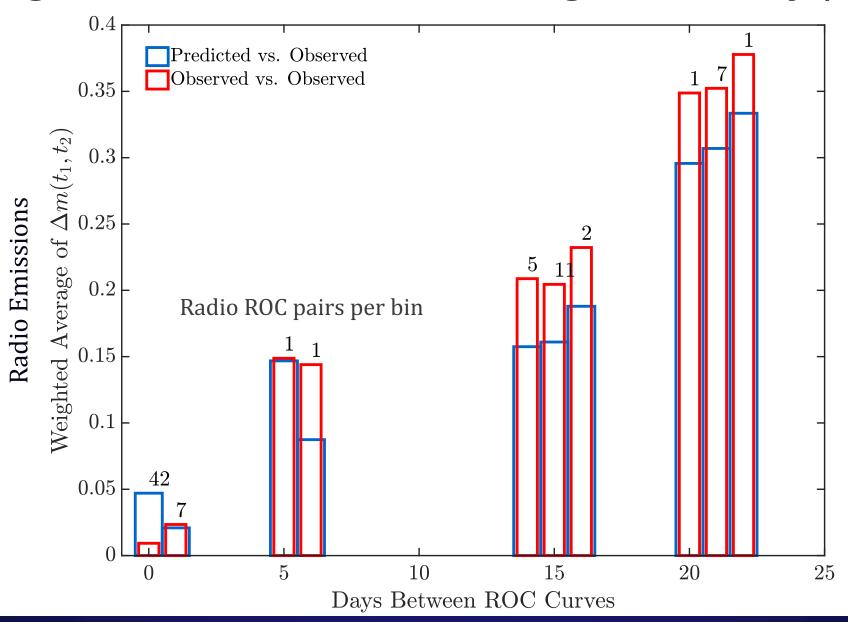
Magnitude Difference at Max Range Probability (3/5)



Magnitude Difference at Max Range Probability (4/5)



Magnitude Difference at Max Range Probability (5/5)



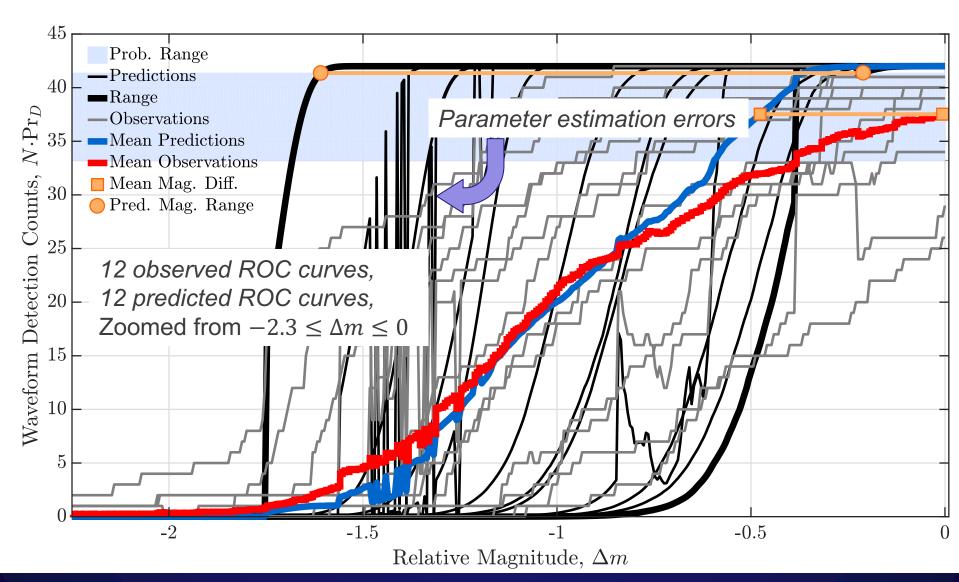
Quantifying the Predictive Capability of an Acoustic Emission, STA/LTA Detector

Estimate Magnitude Differences between Predicted and Observed ROC Curves

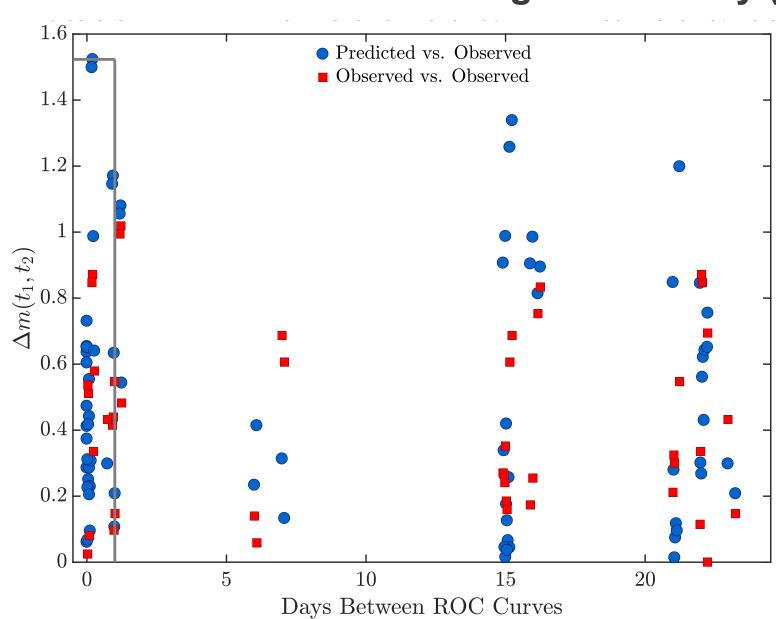
Process over 12 Days, $-2.3 \le \Delta m \le 0$

Acoustic Emissions from Explosions

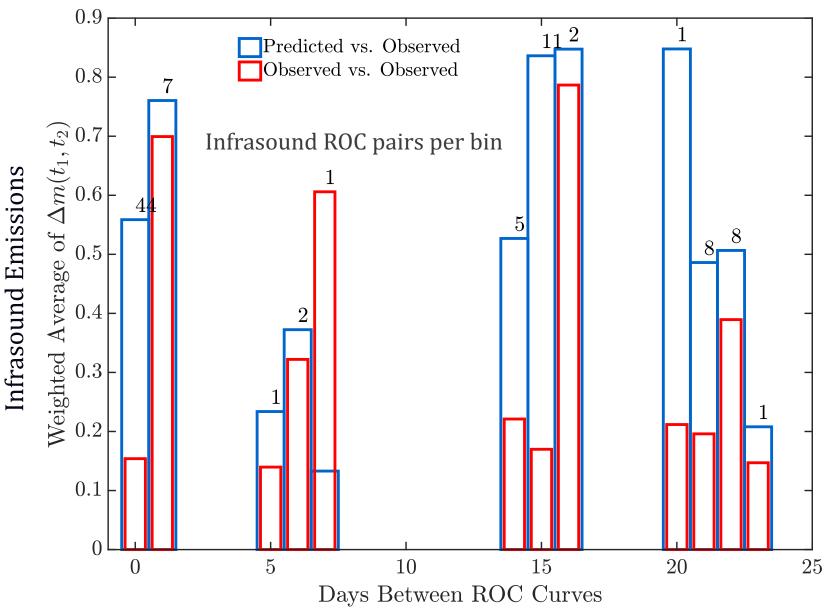
Predicted versus Observed ROC Curves for an STA/LTA Detector



Magnitude Difference at Max Range Probability (1/2)



Magnitude Difference at Max Range Probability (2/2)



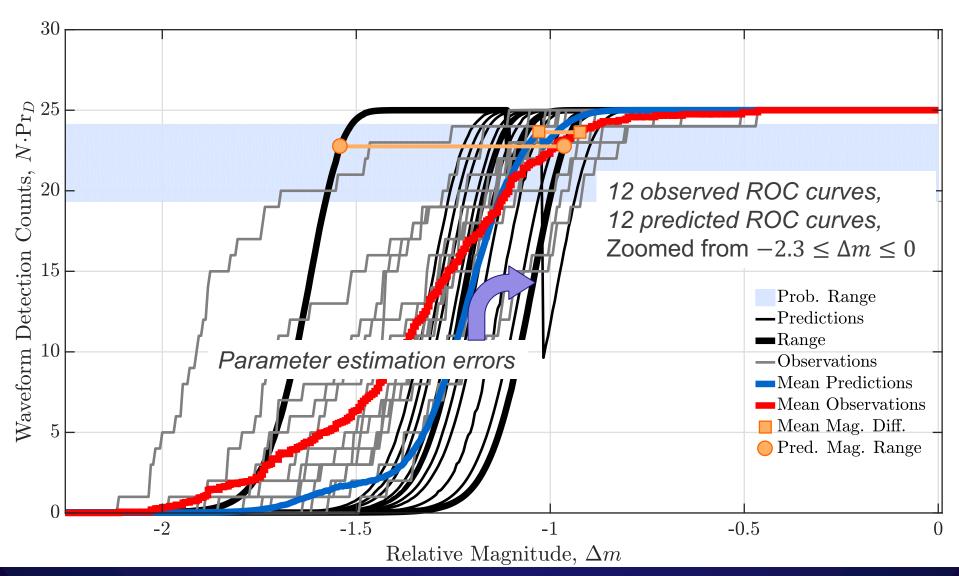
Quantifying the Predictive Capability of an Seismic Emission, Cross-Correlation Detector

Estimate Magnitude Differences between Predicted and Observed ROC Curves

Process over 12 Days, $-2.3 \le \Delta m \le 0$

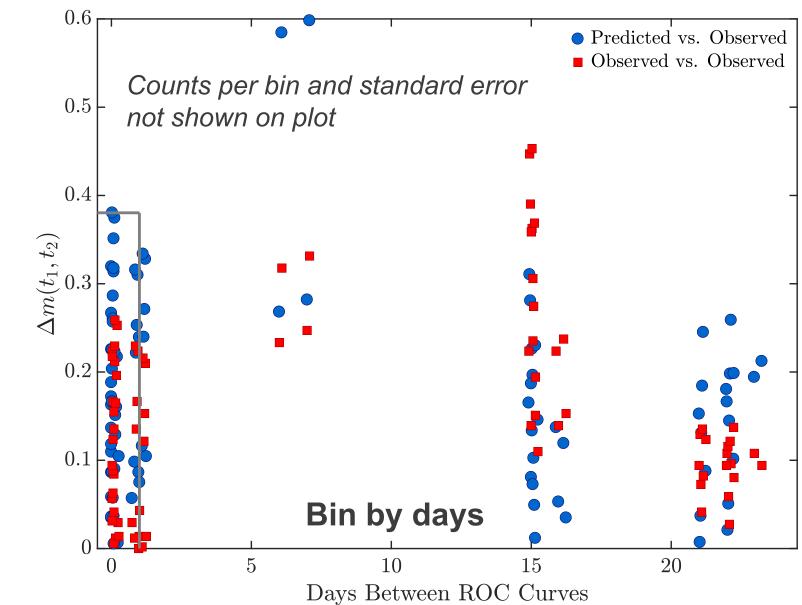
Acoustic Emissions from Explosions

Predicted versus Observed ROC Curves for a Correlation Detector

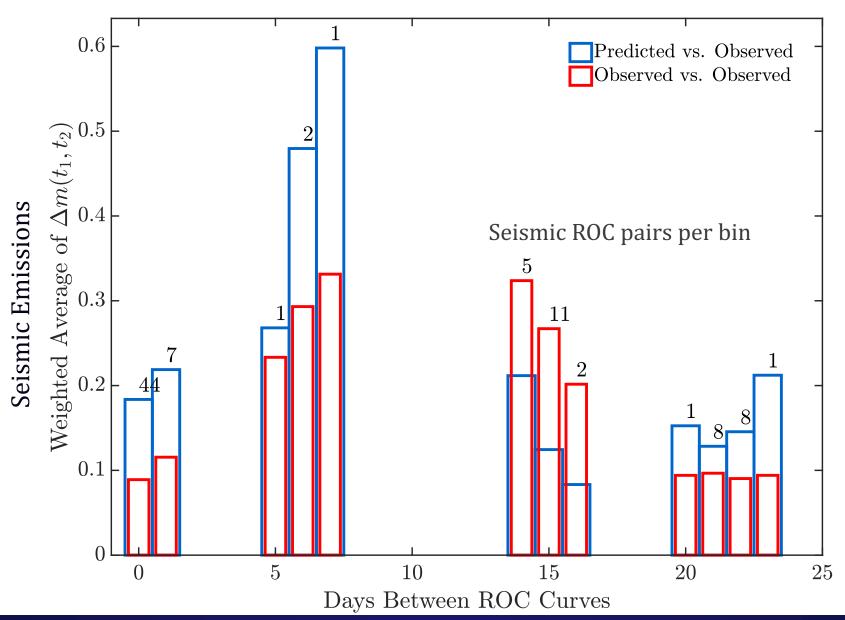


Seismic Emissions

Magnitude Difference at Max Range Probability (1/2)



Magnitude Difference at Max Range Probability (2/2)



Monitoring Challenges

- Does mean predicted detector performance match mean observed performance?
- 2. Does observed versus predicted detector performance exceed day-to-day observed variability? That is, does predicted performance assembled on day A match observations from day A better than observations assembled on day B?
- 3. What is the range in observed versus predicted magnitude discrepancies? That is, if a detector predictively identifies explosions of magnitude m with probability Pr_D , what is the observed, absolute range Δm the detector identifies explosions for probability Pr_D ?

Some Solutions

- 1. SNR, radio detector is *effectively* predictive. STA/LTA acoustic detector is *qualitatively* predictive. Seismic correlation detector observations can outperform predictions (**explain!**)
- 2. Only SNR detector predictions consistently matched observations better than other observations.

- 3. Magnitude range **best/worst** cases, in probability range $0.8 \le Pr_D \le 0.99$
 - 1. Radio: $\Delta m = 0.025/0.33$
 - 2. Acoustic: $\Delta m = 0.15/0.85$
 - 3. Seismic: $\Delta m = 0.10/0.60$

Summary

- *Objective*: build a multi-signature predictive capability. "Predictive" means that if a hypothetical explosion of an anticipated size/yield occurs, we must quantify how well we can detect, associate, screen, locate, or characterize that source.
- Synthesis: ROC curves are predictive when averaged over time. However, empirical ROC curves calculated at different times are often as predictive as calculated ROC curves, over 1-12 day periods

Observed versus Theoretical Discrepancy Summary

Radio: $\Delta m = 0.025/0.33$

Acoustic: $\Delta m = 0.15/0.85$

Seismic: $\Delta m = 0.10/0.60$